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Introduction 

Monoamine neurotransmitters, such as serotonin, dopamine, histamine, and 

adrenaline/noradrenaline (Epinephrine/Norepinephrine), function as 

neuromodulators in the nervous system, affecting complex behaviors, cognitive 
processes like learning and memory, and essential homeostatic functions such as 

sleep and feeding. In addition to their neural roles, these neurotransmitters 

significantly impact peripheral tissues, influencing inflammation, the tumor 
microenvironment, and other pathways that contribute to the initiation and 

progression of various cancers (1-5).  

Breast cancer (BC) is the most prevalent cancer and has the highest mortality 
rate among women worldwide (6). Despite advancements in early detection and 

treatment, breast cancer remains a significant threat to society and public health 

providers due to its potential for metastasis and the complexity of its molecular 
characteristics (7). Monoamine neurotransmitters significantly influence breast 

cancer biology (Table 1 and Figure 1). These neurotransmitters are crucial for 

mammary gland development (8). Additionally, they are implicated in the 
development of depression, a significant risk factor for breast cancer progression. 

Patients with breast cancer also face a heightened risk of depression, which 
accelerates cancer progression by affecting the metabolism of monoamine 

neurotransmitters in the brain and amino acids in the blood. Changes in gut 

microbiota may impact neurotransmitter synthesis. Furthermore, the 
inflammatory environment associated with depression can lead to immune 

dysfunction, further promoting tumor growth (9). 

Exploring the connection between these neurotransmitters and breast cancer 
cell growth has revealed their crucial role in breast cancer biology and their 

potential significance in enhancing breast cancer treatment (Table 2) (5,10).This 

review discusses the influence of monoamine neurotransmitters on breast cancer 

progression, their role as immunomodulators, and the therapeutic potential of 

various drug classes that modulate these neurotransmitters, including monoamine 
oxidase inhibitors (MAOIs), selective serotonin reuptake inhibitors (SSRIs), 

antihistamines, beta-blockers, and phenothiazines. 

Role of monoamine neurotransmitters in breast cancer 

Serotonin 

Serotonin (5-HT) is recognized as a growth factor in various cancers, including 

breast cancer. Research predominantly indicates that serotonin promotes growth, 
angiogenesis, and metastasis in breast cancer (11-16). Serotonin's autocrine and 

paracrine functions are essential for maintaining homeostasis in mammary gland 
development and cancer progression (17). However, the role of serotonin in 

breast cancer is complex and concentration-dependent. At low levels, serotonin 

can act as a tumor suppressor in non-transformed cells and early-stage cancers 
by inhibiting growth and reducing blood supply through decreased THP-1 

expression. As the tumor progresses, genetic and epigenetic changes in serotonin 

signaling lead to resistance to its suppressive effects. This transition allows for 
increased serotonin production and altered receptor expression, promoting breast 

cancer progression. Consequently, while low doses of serotonin inhibit tumor 

growth, elevated levels and modified 5-HT receptor signaling can contribute to 

malignant transformation. Overall, this model illustrates the shift in serotonin's 

role from protective in early stages to potentially tumor-promoting in advanced 

disease (13,14,17).   
Serotonin promotes angiogenesis in multiple ways: it stimulates the 

proliferation, invasion, and migration of endothelial cells and regulates 

macrophage-mediated angiogenesis. Additionally, it influences blood vessel 
formation (18,19). Moreover, serotonin disrupts the interaction between 

osteoblasts and osteoclasts in breast cancer cells, suggesting that high levels of 

gut-derived serotonin may boost breast cancer bone metastasis (20).  

Epinephrine and norepinephrine 

Stress-related activation of adrenergic receptors plays a significant role in cancer 

progression (21). Psychological and pharmacological inhibition of excessive 
adrenergic and inflammatory stress signaling can be beneficial in cancer 

treatment (22). Breast cancer tissues exhibit an overexpression of β-adrenergic 

receptors (23), with β2-adrenoceptor (β2AR) activation facilitating tumor 
proliferation and angiogenesis through the upregulation of vascular endothelial 

growth factor, metalloproteinase-2, and metalloproteinase-9. This molecular 

pathway significantly promotes the angiogenic and metastatic progression of 
breast cancer (24).  

Additionally, β2AR signaling contributes to tumorigenesis by inducing DNA 

damage and inhibiting p53-mediated apoptotic pathways (25). In cases of 
metastatic breast cancer, the skeleton is a common site of metastasis. Activation 

of β2AR in osteoblasts has been shown to enhance bone vascular density, creating 

a more favorable microenvironment for the colonization and growth of cancer 
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cells (26-28). These findings underscore the critical role of epinephrine and 

norepinephrine signaling in breast cancer progression and metastasis. 

Dopamine 

Dopamine plays an important role in lactation and mammary gland development, 

with its receptors expressed in mammary epithelial cells. The dopaminergic 

system has a multifaceted role in the development and progression of breast 
cancer, influencing various aspects such as cell proliferation, apoptosis, 

migration, invasion, and angiogenesis (29-34). Factors such as tumor type, 

receptor expression, and dosage affect dopamine’s impact on cancer growth. In 
breast cancer research, dopamine has demonstrated a significant reduction in 

angiogenesis, showcasing an inhibitory effect on tumor growth. While it did not 

reduce the proliferation and invasion of breast and colon cancer cells, the 
activation of some dopamine signaling pathways induces growth arrest in vitro, 

resulting in tumor shrinkage and diminished bone metastasis (35,36).  

Dopamine signaling interacts with pathways such as estrogen and human 
epidermal growth factor receptor 2 (HER2), influencing tumor growth and 

progression (37). Overall, the link between the dopaminergic system and breast 

cancer underscores the complexity of tumor biology and highlights the potential 
of targeting dopaminergic pathways for novel therapeutic strategies in breast 

cancer treatment (38-41). 

Histamine 

Studies have presented conflicting evidence on how histamine affects breast 

cancer. On one hand, histamine has been shown to promote tumor cell 

proliferation and metastasis in various human cell lines, including breast cancer, 
lymphoma, ovarian cancer, colorectal cancer, and melanoma (42). This 

proliferative effect is further supported by studies demonstrating increased 
proliferation of mammary tumor cells in female rats treated with histamine (43), 

as well as in breast cancer cell lines (44,45). 

Conversely, other studies highlight histamine’s potential anti-tumor effects. 
In nude mice, histamine administration significantly reduced tumor cell 

proliferation, increased tumor apoptosis, and improved median survival (46). 

Additionally, the treatment of tumor-bearing mice with histamine resulted in 
reduced tumor growth, increased apoptosis, and a higher presence of tumor-

infiltrating lymphocytes (47). These findings suggest that while histamine can 

enhance tumor proliferation in certain contexts, it may also inhibit proliferation 
and promote apoptosis in others, indicating a complex and context-dependent 

role in breast cancer progression. 

Role of monoamine neurotransmitters as immunomodulators in breast 

cancer 

Inflammation is an important factor in the pathophysiology of both depression 

and cancer. Cancer patients have a higher rate of depression within the first five 

years of diagnosis, and chronic depression is linked to increased cancer risk and 
reduced survival. Elevated levels of circulating proinflammatory cytokines in 

depression may mediate neuroendocrine, neural, and immune pathways, 

influencing monoamine neurotransmitter metabolism. Inflammation is a 
significant cancer risk factor, with 20% of cancers caused by chronic 

inflammation; however, an anti-inflammatory microenvironment also promotes 

tumor immune evasion (48-51).   
Monoamine neurotransmitters impact immune response modulation and 

breast cancer in complex ways. Histamine and dopamine generally boost immune 

responses, potentially enhancing anti-tumor immunity, while serotonin and 
stress-related adrenaline/noradrenaline can both promote and inhibit immune 

functions, often contributing to a pro-tumorigenic effect. These interactions 

highlight the complex roles of monoamine neurotransmitters in modulating 
immune responses and cancer progression. 

Among the inflammatory mediators, histamine can also be produced by 

tumor cells (e.g., breast tumor cells) and can induce chronic inflammation and 
the growth of certain tumors by recruiting inflammatory cells. Histamine 

influences tumor pathophysiology, treatment efficacy, and patient survival 

(42,47,52-54). Similarly, epinephrine and norepinephrine, triggered by stress, can 
lead to the release of pro-inflammatory complexes from neutrophils, which can 

activate dormant cancer cells (55).  

In contrast to epinephrine and norepinephrine, histamine has been shown to 
promote anti-tumor immunity, increasing T CD4+ and natural killer (NK) cell 

infiltration in the tumor microenvironment (56). Additionally, histamine inhibits 

regulatory T cell (Treg) function (57). These cells typically suppress cytotoxic T 
cell activity, thereby promoting tumor development (58). Furthermore, histamine 

enhances B-cell-related immune responses and anti-tumor immunity (59). 

Similar to histamine, dopamine generally exerts a stimulatory effect on 
immune cells. It stimulates cytotoxic T cells and down-regulates Treg function, 

contributing to an antitumor action (60-62). Dopamine also enhances 

macrophage activity (63), shifting tumor-associated macrophages (TAMs) from 
the M2 to the M1 phenotype (64), and inhibits myeloid-derived suppressor cells, 

thereby boosting anti-tumor immunity (65). Activation of D1-like receptors 

increases NK cell cytotoxicity (66), further supporting dopamine’s antitumor 
role. Conversely, more recent studies have also demonstrated an inhibitory effect 

of dopamine on immune cells; one study showed that activation of D2-like 
receptors suppresses NK cell function (66). Additionally, inhibition of dopamine 

receptor D3 signaling in dendritic cells enhances antigen cross-presentation to 

CD8+ T-cells, favoring anti-tumor immunity (67). 

Earlier studies reported that serotonin promotes NK cells and T cell anti-

tumor activity (68-70).  However, the effect of serotonin on immune cells is 

significantly influenced by factors such as the specific cell type and the subtype 
of the 5-HT receptor involved. Consequently, it is challenging to definitively 

categorize serotonin as having a purely pro- or anti-tumorigenic role (71). Most 

studies indicate that serotonin influences immune signaling, promotes the growth 
of breast cancer cells (5), and may contribute to a pro-tumorigenic effect by 

facilitating tumor immune evasion through the creation of an anti-inflammatory 

microenvironment (11).  
More recent research has demonstrated that signaling through serotonin 

receptors facilitates the differentiation of anti-inflammatory M2 macrophages, 

which subsequently contribute to tumor progression. Serotonin also has an 
inhibitory effect on cytokine secretion, including TNF-α and IL-12, by monocyte-

derived M2 macrophages (19,72). Additionally, serotonin signaling plays a role 

in the differentiation of anti-inflammatory dendritic cells (DCs), potentially 
influencing T cell polarization toward a regulatory phenotype (73). Serotonin 

influences cytokine secretion by DCs, increasing the release of IL-1β and IL-8 

while decreasing the secretion of IL-12 and TNF-α from DCs (74). These 
findings underscore the complex regulatory role of serotonin in the tumor 

microenvironment. 

Therapeutic potential of modulating monoamine neurotransmitter 

pathways 

MAOI 

Monoamine oxidase enzymes moderate levels of monoamine neurotransmitters 

in the central nervous system and peripheral organs. Monoamine oxidase A 

(MAO-A) is involved in the degradation of serotonin, dopamine, epinephrine, 
and norepinephrine, while monoamine oxidase B is involved in the degradation 

of histamine (75,76). The expression level of intratumoral MAO-A is negatively 

correlated with patient survival in multiple breast cancer cohorts (77). Disruption 
in neuroendocrine-immune interactions in female rats with mammary tumors can 

be reversed by deprenyl, a monoamine oxidase inhibitor, which enhances 

catecholaminergic activity and readjusts immunological responses (78).   
MAO-A expression was significantly downregulated in clinical 

hepatocellular carcinoma samples, correlating with cancer vasoinvasion, 

metastasis, and poor prognosis, suggesting that increasing MAO-A expression or 
activity may be a novel treatment approach for hepatocellular carcinoma (79). 

Treatment with MAOIs such as phenelzine, clorgyline, moclobemide, and 

pirlindole inhibited tumor progression in preclinical models by reprogramming 
TAMs and suppressing tumor growth. Additionally, combining MAOI and anti-

PD-1 treatments resulted in synergistic tumor suppression (80). These results 

highlight the potential of MAOIs as a promising therapeutic strategy in cancer 
treatment. 

Selective Serotonin Reuptake Inhibitors (SSRIs) 

SSRIs are commonly used medications for treating a range of conditions, such as 
depression and anxiety. Studies on cells and mouse models have shown that 

SSRIs, particularly sertraline, can reduce breast tumor-initiating cell activity and 

tumor growth and enhance tumor cell death when combined with drugs used in 
chemotherapy such as docetaxel (81-83). However, population-based cohort 

studies have indicated that SSRI use is associated with an increased breast cancer 

mortality risk. One study of 23,669 patients revealed a 27% increase in mortality 
risk with SSRI use, and a 54% rise in mortality for those using SSRIs for three 

years or longer (84). Another analysis of 7,000 patients found that SSRI use 
before or after a breast cancer diagnosis was linked to a significantly higher 

mortality rate (85). 

Antihistamines 

Antihistamines, functioning as histamine receptor antagonists, play a significant 

role in modulating the effects of histamine in tumor cells, thereby influencing 

breast cancer treatment outcomes. While some studies suggest that antihistamines 
may increase tumor cell numbers, potentially leading to negative outcomes for 

breast cancer patients (44), several research findings support their beneficial 

effects, demonstrating that antihistamines can enhance treatment efficacy and 
improve the survival rates of breast cancer patients (53,86). Additionally, 

antihistamines have been found to induce autophagy and apoptosis (87), inhibit 

cell proliferation, activate the mitochondrial apoptosis pathway, and reduce 
tumor growth in breast cancer cells (88). Furthermore, they have been shown to 

decrease the proliferation rate of various breast cancer cell lines (89). 

Beta-blockers 

The literature on the effects of beta-blockers in breast cancer has yielded a diverse 

range of results. A meta-analysis of six studies, encompassing over 18,000 breast 

cancer patients, found no benefit of beta-blockers on overall survival, cancer-
specific survival, or recurrence (90). Similarly, another more recent meta-analysis 

of 17 studies reported no significant association between beta-blocker use and 

breast cancer recurrence (91).  

Some studies suggest potential benefits of beta-blockers for breast cancer in 

certain subgroups. A systematic review and meta-analysis indicated that beta-

blocker use was associated with longer recurrence-free survival in patients with 
early-stage breast cancer, with a more pronounced effect observed in those with 

triple-negative disease (92). Conversely, a study found that existing beta-blocker 

use at the time of anti-HER2 therapy was associated with worse overall survival 
among patients with advanced HER2-positive breast cancer (93). Additionally, a 
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meta-analysis of nearly 15,000 breast cancer patients in New Zealand revealed a 

short-term increased risk of death among patients who took beta-blockers post-

diagnosis, but a protective effect with long-term use (94). 

Phenothiazines 

Phenothiazines, a class of anti-psychotic medications that antagonize dopamine 

receptors, have been shown to reduce invasion and proliferation while increasing 
apoptosis of triple-negative breast cancer cells (95). Additionally, administering 

phenothiazines to mice with triple-negative breast cancer xenografts resulted in 

reduced tumor growth and metastasis (96). In vitro experiments have shown that 

trifluoperazine, a phenothiazine used to treat disorders such as depression and 
anxiety, induces cell cycle arrest and apoptosis in various cancer cell lines, 

including triple-negative breast cancer. It also suppressed the growth of 

subcutaneous xenograft tumors and brain metastases without causing detectable 
side effects, leading to prolonged survival in mice with brain metastases (97). 

Table 1. Role of monoamine neurotransmitters in breast cancer progression and cancer immunity 

Monoamine neurotransmitter Role in breast cancer progression Role as immunomodulator in breast cancer 

Serotonin 

• Facilitating tumor proliferation, promoting metastasis 

and angiogenesis (11-16). 

• Suppressing tumor growth in non-transformed cells 

and early-stage cancers (13,14,17). 

• Promoting NK cells and T cell anti-tumor activity (68-70). 

• Facilitating tumor immune evasion (11), facilitating the differentiation of anti-

inflammatory M2 macrophages (19,72). 

• Promoting differentiation of anti-inflammatory DCs, influencing T cell polarization 

toward a regulatory phenotype (73). 

Epinephrine and norepinephrine 
Facilitating tumor proliferation, promoting metastasis 

and angiogenesis (24,26-28) 

Facilitating release of pro-inflammatory complexes from neutrophils, which can 

activate dormant cancer cells (55). 

Dopamine 
No effect on proliferation; reduced angiogenesis and 

metastasis (35,36). 

• Stimulating cytotoxic T cells and down-regulating Treg function (60-62). 

• Shifting TAMs from the M2 to the M1 phenotype (64), and inhibiting myeloid-derived 

suppressor cells (65). 

• Increasing NK cell cytotoxicity (66). 

Histamine 

• Promoting tumor cell proliferation and metastasis 

(42,43,45). 

• Reducing tumor growth (46,47) 

• Promoting anti-tumor immunity, increasing T CD4+ and NK cell infiltration in the 

tumor microenvironment (56). 

• Inhibiting Treg function (57). 

• Enhancing B-cell-related immune responses and anti-tumor immunity (59). 

 

 
Figure.1: Role of monoamine neurotransmitters in breast cancer growth, progression and cancer immunity 

 

 

Table 2. Treatment outcomes of monoamine neurotransmitter modulating drug classes 

Monoamine neurotransmitter 

modulating drug class 
Treatment outcomes 

MAOI Inhibited tumor progression in preclinical models by reprogramming TAMs in mouse and human (80). 

SSRIs Increased breast cancer mortality (84,85). 

Antihistamines Improved the survival rates of breast cancer patients (53,86). 

Beta-blockers 

• No benefit on overall survival (90,91). 

• Potential benefits for triple-negative breast cancer (92). 

• Worse overall survival among patients with advanced HER2-positive breast cancer (93). 

• Short-term increased risk of death among patients who took beta-blockers post-diagnosis, but a protective effect with long-term use (94). 

Phenothiazines 
• Reduced tumor growth and metastasis (96). 

• Prolonged survival in mice with brain metastases (97). 
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Conclusion 

The complex role of monoamine neurotransmitters in breast cancer progression, 

angiogenesis, and metastasis is influenced by various factors, leading to varied 

outcomes. Serotonin, epinephrine, and norepinephrine generally exhibit pro-

tumorigenic effects by modulating tumor cells, the tumor microenvironment, and 

immune cells. Conversely, dopamine has shown promising anti-tumorigenic 
activity, enhancing immune responses and potentially boosting anti-tumor 

immunity. Although histamine also shows potential in enhancing anti-tumor 

immunity, its effects on breast cancer progression remain inconclusive due to 
conflicting evidence.  

The impact of drugs that modulate monoamine neurotransmitters on breast 

cancer progression is equally complex. Beta-blockers have produced mixed 
results, with their effects on cancer progression remaining controversial. SSRIs, 

such as sertraline, have been associated with a significantly higher mortality rate 

in population-based cohort studies, requiring careful consideration for breast 
cancer patients who may also suffer from depression, as this malignancy 

considerably elevates their risk of developing depression. In contrast, MAOIs, 

antihistamines, and phenothiazines have demonstrated promising inhibitory 
effects on tumor progression. These findings underscore the complex role of 

these drugs in breast cancer treatment, highlighting their therapeutic significance. 

These insights not only call for further research but also open exciting 

avenues for improved breast cancer treatments. The multifaceted impact of these 

drugs in managing cancer and comorbid conditions underscores the need for 

careful prescription to optimize patient outcomes. 
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